Tetrahedron Letters, Vol.29, No.3, pp 325-328, 1988 0040-4039/88 \$3.00 + .00 Printed in Great Britain Pergamon Journals Ltd.

CONSTRUCTION OF CHIRAL QUARTERNARY CARBON CENTERS USING 3-SUBSTITUTED 5-TRIMETHYLSILYL-2-CYCLOHEXENONES: SYNTHESIS OF (+)-Ø-CUPARENONE

Morio ASAOKA^{*}, Kazuya TAKENOUCHI, and Hisashi TAKEI Department of Life Chemistry, Tokyo Institute of Technology, Nagatsutacho, Midoriku, Yokohama 227, Japan

Summary: 1,4-Addition of Grignard reagents to 3-substituted 5-trimethylsilyl-2-cyclohexenones proceeded in a highly diastereoselective manner. By utilizing the reaction, (+)-A-cuparenone was synthesized starting from enantiomerically pure 3-p-tolylthio-5-(trimethylsilyl)cyclohexanone.

In the preceding paper,¹⁾ we reported the synthesis and kinetic resolution of 5-trimethylsilyl-2-cyclohexenone (1) which reacted with various Grignard reagents to give 1,4-adducts with high diastereoisomeric purity. Furthermore, synthesis of $(+)-\alpha$ -curcumene starting from optically pure 1 was demonstrated.

In this paper we wish to report a highly stereoselective construction of quarternary carbon centers by 1,4-addition of Grignard reagents to 3-substituted 5-trimethylsilyl-2-cyclohexenones $(4 \rightarrow 8, \text{ Scheme 2})$.

 (\pm) -3-Substituted-5-trimethylsilyl-2-cyclohexenones (4) were prepared from 1 or (\pm) -3-arylthio-5-trimethylsilylcyclohexanone (2) by the following three methods. Method A: 1,2-Addition of RLi to 1 in the presence of BF₃-Et₂O²) followed by oxidation with PCC or PDC.³) Method B: 1,4-Addition of R₂CuMgBr or R₂CuLi to (\pm) -3-p-tolyl-5-trimethylsilyl-2-cyclohexenone (5) which is obtained in 74% yield by the oxidation of 2 with NCS in CCl₄ at 0°C. Method C: 1,2-Addition of RLi to 5 followed by hydrolysis in the presence of HgCl₂/HgO.

Scheme 1

Entry	R	Method	Yield 4 (%)
1	Me	А	77a)
2	n-Bu	А	73 ^a)
3	Ph	A ^b)	₅₃ a)
4	n-Bu	Bc)	100 ^d)
5	Ph	Be)	87 ^d)
6	Ме	Bc)	92 ^d)
7	n-Hex	Be)	89 ^d)
8	PhCH ₂ CH ₂ -	B ^{e)}	95 ^d)
9	p-MeO-C ₆ H ₄ -	Be)	64 ^d)
10	- 04 n-Bu	с	64 ^d)
11	Ph	с	47 ^d)

Table 1. Synthesis of 4

a) Based on 1. b) Without BF_3 -Et₂0, c)R₂CuLi. d) Based on 5. e) R₂CuMgBr.

Next, 1,4-addition of Grignard reagents⁴⁾ to the enones (4) was examined. The reaction of Grignard reagents (2 eq) to 4 in the presence of 5 mol% CuBr-SMe₂, TMSCl (2.5 eq), HMPA (2 eq) in THF at -78° C for 1-1.5 h and subsequent KF catalyzed hydrolysis of the products, enol silyl ethers (7), gave expected 1,4-adducts (8) as shown in Table 2.

Scheme 2

Entry	R ¹	R ²	х	Yield 8 (%)
1	Me	Ph	Br	94
2	Ph	Me	I	56 ^{a)}
3	Me	n-Bu	Br	91
4	n-Bu	Me	I	80
5	Me	PhCH ₂ CH ₂	Br	86
6	PhCH ₂ CH ₂	Me	I	90
7	Me	p-Tol	Br	90

Table 2. 1,4-Addition of Grignard reagents to 4

a) Diastereoisomeric mixture (97:3, evaluated by ^{13}C NMR).

When substituent R^1 in 4 is alkyl group, adducts 8 were obtained in high yields and the presence of diastereoisomers were not discernible by 13 C NMR, although when R^1 is phenyl group, the yield of the adduct was low and it contained a small amount of diastereoisomer (entry 2). Thus, 1,4-addition of various Grignard reagents to optically pure 4 is evaluated to be a prospective method to construct a highly optically pure quarternary carbon center on cyclohexane ring. Furthermore, TMS group of the products can be used for the further elabolation such as regiospecific Baeyer-Villiger reaction.⁵

To demonstrate the utilities of this strategy and to confirm the stereochemistry of quarternary carbon centers, synthesis of (+)- α -cuparenone was carried out. Oxidation of optically pure ketone (+)-2 [mp 112.5-113°C, $[\alpha]_D^{22}$ +33.50°, c 2.00, CHCl₃]¹⁾ with NCS in CCl₄ gave (-)-5 [mp 99.5-100°C, $[\alpha]_D^{22}$ -102.4°, c 1.00, CHCl₃] in 82% yield. Reaction of Me₂CuLi with (-)-5 in THF at -78°C gave (-)-4 (74%) which afforded (+)-8 in 98% yield by the reaction with p-tolMgBr. TMS group directed regiospecific Baeyer-Villiger oxidation⁵⁾ gave 7-membered lactone (+)-9 in 74% yield after recrystallization from hexane [mp 83.5°C, $[\alpha]_D^{23}$ +11.9°, c 4.00, CHCl₃].

The lactone showed unexpected stability under the methanolysis conditions (MeOH-NaOMe at rt) to give the mixture of the lactone (9) and acyclic ester (10) (1:1.3). Hydrolysis with NaOH, acidification, and treatment with CH_2N_2 gave (-)-10 in 80% yield, which was converted to diester (-)-11 (55%) by Jones oxidation and subsequent treatment with CH_2N_2 . Dieckmann condensation of (-)-11 with NaOMe in THF at rt afforded mixture of β -ketoesters which was treated with NaCl in wet DMSO at 130-140°C 3.5 h to give 3,3-disubstituted cyclopentanone (+)-12 as a crystalline product in 61% yield after recrystallization from pentane [mp 45.0-45.5°C, [\propto] $_2^{23}$ +13.3°, c 4.00, CHCl₃]. Direct dimethylation⁶ of (+)-12 with 5 equivalents of MeI in the presence of LiN(TMS)₂ in dimethoxyethane at rt gave (+)- α -cuparenone in 26% yield [mp 55.0-56.5°C [α] $_D^{26}$ +167.7°, c 0.457, CHCl₃].^{7,9}

By the above synthesis, absolute configuration of quarternary carbon center of (+)-8 was confirmed as (R), therefore, geometric structures of (+)-8 were deduced as depicted in Scheme 2.

References and notes

- 1) M. Asaoka, K. Shima, and H. Takei, Tetrahedron Lett., in press.
- 2) M. J. Eis, J. E. Wrobel, and B. Ganem, J. Am. Chem. Soc., 106, 3693 (1984).
- 3) W. G. Dauben and D. M. Michno, J. Org. Chem., 42, 682 (1977).
- Y. Horiguchi, S. Matsuzawa, E. Nakamura, and I. Kuwajima, Tetrahedron Lett., 27, 4025 (1986).
- P. F. Hudrlik, A. M. Hudrlik, G. Nagendrappa, T. Yimenu, E. T. Zellers, and E. Chin, J. Am. Chem. Soc., 102, 6894 (1980).
- 6) G. H. Posner and C. M. Lentz, J. Am. Chem. Soc., 101, 934 (1979).
- 7) The reported specific rotation of natural (+)- and (-)-cuparenone⁸) in CHCl₃ are $[\alpha]_D^{30}$ +177.1° and $[\alpha]_D^{20}$ -169.9°.
- G. L. Chetty and S. Dev, Tetrahedron Lett., 1964, 73; V. Benesova, Collect. Czech. Chem. Commun., 41 3812 (1976).
- 9) Structures of the new compounds depicted in Scheme 1, 2, and 3 are confirmed by their spectral (IR, NMR) data and elemental analyses.

(Received in Japan 2 October 1987)

328